A locking-free discontinuous Galerkin method for linear elastic Steklov eigenvalue problem

نویسندگان

چکیده

In this paper, a discontinuous Galerkin finite element method of Nitsche's version for the Steklov eigenvalue problem in linear elasticity is presented. The priori error estimates are analyzed under low regularity condition, and robustness with respect to nearly incompressible materials (locking-free) proven. Furthermore, some numerical experiments reported show effectiveness proposed method.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Locking-free adaptive discontinuous Galerkin FEM for linear elasticity problems

An adaptive discontinuous Galerkin finite element method for linear elasticity problems is presented. We develop an a posteriori error estimate and prove its robustness with respect to nearly incompressible materials (absence of volume locking). Furthermore, we present some numerical experiments which illustrate the performance of the scheme on adaptively refined meshes.

متن کامل

A locking-free discontinuous Galerkin method for linear elasticity in locally nearly incompressible heterogeneous media

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau...

متن کامل

Discontinuous Galerkin Method for Linear Free-Surface Gravity Waves

• Weak formulation: – Involves a typical primal DG formulation for the Laplace equation (see Arnold et al. (2002)). – Adopt the numerical flux proposed by Brezzi et al. (1999). – Second order accurate time discretization is used for the time derivative in the free surface boundary condition (Van der Vegt and Tomar (2005)). • Finite element discretization results in a symmetric and positive defi...

متن کامل

A Level Set Discontinuous Galerkin Method for Free Surface Flows

We present a discontinuous Galerkin method on a fully unstructured grid for the modeling of unsteady incompressible fluid flows with free surfaces. The surface is modeled by embedding and represented by a levelset. We discuss the discretization of the flow equations and the level set equation as well a various ways of advancing the equations in time using velocity projection techniques. The eff...

متن کامل

A Nodal Discontinuous Galerkin Method for Non-linear Soil Dynamics

We investigate the potential capabilities of the discontinuous Galerkin method (DG-FEM) for non-linear site response analysis. The method combines the geometrical flexibility of the finite element method, and the high parallelization potentiality and the capabilities for accurate simulations of strongly non-linear wave phenomena of the finite volume technique. It has been successfully applied t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Numerical Mathematics

سال: 2023

ISSN: ['1873-5460', '0168-9274']

DOI: https://doi.org/10.1016/j.apnum.2023.02.018